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The classical bilinear-biquadratic nearest-neighbor Heisenberg antiferromagnet on the pyrochlore lattice
does not exhibit conventional Néel-type magnetic order at any temperature or magnetic field. Instead spin
correlations decay algebraically over length scales r��c�1 /�T, behavior characteristic of a Coulomb phase
arising from a strong local constraint. Despite this, its thermodynamic properties remain largely unchanged if
Néel order is restored by the addition of a degeneracy-lifting perturbation, e.g., further neighbor interactions.
Here we show how these apparent contradictions can be resolved by a proper understanding of way in which
long-range Néel order emerges out of well-formed local correlations and identify nematic and vector-multipole
orders hidden in the different Coulomb phases of the model. So far as experiment is concerned, our results
suggest that where long-range interactions are unimportant, the magnetic properties of Cr spinels which exhibit
half-magnetization plateaux may be largely independent of the type of magnetic order present.
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I. INTRODUCTION

Frustrated magnets have long been studied as a paradigm
for complex behavior in condensed matter and statistical
physics.1 The most widely studied systems are frustrated an-
tiferromagnets �AF�, where competing interactions suppress
classical Néel order. In some highly frustrated magnets, spins
do not order at any temperature and the ground state retains
only very short-ranged spin-spin correlations. The resulting
state is generally termed a “spin liquid.”

However it is also possible to invert this paradigm and
think of highly frustrated magnets as systems where local
“order” is robust enough to survive, even where long-range
order has been obliterated by fluctuations. Conventional Néel
order can then easily be restored—albeit with a relatively
low critical temperature—by any perturbation which forces
long-range coherence on this preformed local order. More-
over, where quantities such as heat capacity and magnetic
susceptibility are controlled by local fluctuations, the ther-
modynamic properties of the globally disordered spin-liquid
phase may be practically indistinguishable from those of the
magnetically ordered phase.

In this paper we explore this “bottom-up” formulation of
frustration, showing how the different multipolar and spin-
liquid states of a simple classical frustrated antiferromagnet
in applied magnetic field already contain the seeds of long-
range Néel order. The model which we consider is the anti-
ferromagnetic nearest-neighbor Heisenberg model with addi-
tional biquadratic interactions b

H = J1�
�ij�1

�Si · S j − b�Si · S j�2	 − h · �
i

Si, �1�

where the sum �ij�1 runs over the nearest-neighbor bonds of
a pyrochlore lattice �Fig. 1�. All the energy scales including
h
�h� and temperature T are measured in units of J1 here-
after.

This model was introduced in Ref. 2 to explain the dra-
matic half-magnetization plateau observed in Cr spinels.3–8

In this case the biquadratic interaction b originates in a
strong coupling to the lattice. However such terms can also
be of electronic origin and quite generally they can be taken
to characterize the effects of quantum and/or thermal fluctua-
tions in a frustrated magnet.9–11 Thus we anticipate many of
our results will also be relevant for the quantum model. Re-
cent results for the S=3 /2 XXZ pyrochlore AF in applied
magnetic field suggest that this is indeed the case.12,13

It is well known that the classical Heisenberg model with
the nearest-neighbor bilinear couplings only does not exhibit
Néel-type magnetic order on the pyrochlore lattice at any
temperature.14,15 As we shall see, these arguments are essen-
tially unchanged by the introduction of magnetic field or by
nearest-neighbor biquadratic interactions b. The system can
however be brought to order by introducing an interaction

J3

J1

J3

J1

FIG. 1. �Color online� 16-site cubic unit cell of the pyrochlore
lattice—a network of corner-sharing tetrahedra. Exchange interac-
tions J1 are associated with the first neighbor bonds �ij�1, and J3

with the two �inequivalent� types of third-neighbor bond �ij�3.
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which links spins in different tetrahedra, for example,

HLRO = J3�
�ij�3

Si · S j , �2�

where �ij�3 runs over the two �inequivalent� sets of third-
neighbor bond shown in Fig. 1.

For ferromagnetic �FM� J3�0, this specific form of HLRO

leads to the four-sublattice long-range order �LRO� described
in Ref. 2 and to the finite-temperature transitions shown in
Fig. 2�a�.16,17 Four sublattice order can also be stabilized by
AF second neighbor interaction J2. More generally, however,
the type of order which results depends on the details of the
interaction HLRO.18,19 The system can therefore be tuned at
will between different types of ordered state, simply by
changing HLRO. From this we conclude that, as a function of
magnetic field h, for HLRO=0, there must be a line of
second-order multicritical—or first-order multifurcative
points—separating a huge set of different ordered phases.

The main purpose of this paper is to explore the symmetry
breaking which persists in the limit of HLRO→0 for finite
biquadratic interaction b and finite temperature T. In order to
make the problem accessible to large-scale Monte Carlo
�MC� simulation, we consider the classical S
�S�→� limit
of Eq. �1�, rescaling variables such that S
1.

Using a mixture of classical MC simulation, analytic
low-T expansion, and simple field theoretical arguments, we
find a set of phases in the h-T plane which exhibit power-law
decay of spin-correlation functions. Two of these phases pos-
sess long-range nematic or vector-multipole order and, most
interestingly, the magnetization plateau persists in the ab-
sence of conventional magnetic order. We show how all of
these results can be understood—and even anticipated—
from a proper understanding of the geometry of the pyro-
chlore lattice and the way in which a single tetrahedron be-
haves in magnetic field. Our findings are summarized by the
h-T phase diagram shown Fig. 2�b�.

So far as experiment is concerned, our main conclusion
will be that the thermodynamic properties of the pyrochlore
antiferromagnet in applied magnetic field are mostly deter-
mined by symmetry breaking at the level of single tetrahe-
dron. Local order is well formed for HLRO=0 and many
properties of the system are therefore insensitive to the de-
tails of the LRO order present. Thus the very simple phase
diagram derived in Ref. 2 and its finite-temperature generali-
zation in Refs. 16 and 17 �reproduced in Fig. 2�a�	 are appli-
cable for a wide variety of different HLRO.

The paper is structured as follows: in Sec. II we briefly
review the basic physics of the Heisenberg model on the
pyrochlore lattice. Definitions are given of order parameters
for conventional Néel �dipolar� order and of rank-two tensor
order parameters which can be used to signal multipolar or-
der.

Then, in Sec. III we use these tools to construct the h-T
phase diagram of the pyrochlore AF with additional biqua-
dratic interactions �Fig. 2�b�	. Thermal fluctuations preserve
the extensive degeneracies present in the ground state and
fail to select any conventional long-range dipolar order. De-
spite this, the thermodynamic properties of the system
and the topology of the phase diagram are essentially

unchanged—the magnetization plateau survives and nematic
and vector-multipole phases corresponding to the two differ-
ent canted states are shown to exist for fields below and
above the magnetization plateau �Fig. 2�a�	.

In Sec. IV we explore the way in which long-range Néel
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FIG. 2. �Color online� �a� Magnetic phase diagram of the clas-
sical pyrochlore antiferromagnet with biquadratic interactions b
=0.1, and additional third-neighbor interactions J3=−0.05, as deter-
mined by classical Monte Carlo simulation �Refs. 16 and 17�. The
form of four-sublattice Néel order is illustrated together with the
irreducible representation �irrep� of the tetrahedral symmetry group
Td to which it belongs. For these parameters, the model provides a
good description of the half-magnetization plateau seen in CdCr2O4

�Refs. 3–8�. �b� Equivalent magnetic phase diagram in the absence
of any longer-range interactions. Canted Néel states are replaced by
phases with multipolar order while the collinear half-magnetization
plateau state gives way to a collinear spin liquid. Crosses denote the
crossover at temperature T� from paramagnet to the plateau-liquid
state as determined by a peak in the heat capacity. In both �a� and
�b� circles with solid �red� lines denote first-order phase boundaries
while those with dashed �blue� lines denote second-order ones. Both
T and h are measured in units of J1.
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order is recovered as a FM third-neighbor interaction J3 is
“turned on,” focusing on the half-magnetization plateau for
h�4. For small �J3�, the system now exhibits two character-
istic temperature scales—an upper temperature T��b at
which the gap protecting the magnetization plateau opens
and a lower temperature TN�O��J3�� at which the system
exhibits long-range magnetic order. This is contrasted with
the situation for h=0, where the system also exhibits two
characteristic temperature scales but these correspond to suc-
cessive phase transitions: a nematic transition at TQ�b and a
Néel ordering at TN�O��J3��. We discuss the nature of these
transitions for J3→0, identifying a line of first-order multi-
furcative points at J3=0. And, for J3=0, we identify an un-
usual continuous transition from the Coulombic plateau liq-
uid to the vector-multipole phase. At low temperatures this
transition appears to have mean-field character. Finally, in
Sec. V we conclude with a discussion of the broader impli-
cations of these results.

II. DEGENERACIES IN FINITE MAGNETIC FIELD

A. Geometrical arguments

The pyrochlore lattice �Fig. 1� is the simplest example of
a three-dimensional �3D� network of corner-sharing com-
plete graphs. Its elementary building block is the tetrahedron,
in which every site is connected to every other site, i.e., the
tetrahedron is a complete graph of order four. Tetrahedra in
the pyrochlore lattice can be divided into A and B sublattices
with each lattice site shared between an A- and a B-sublattice
tetrahedrons. The centers of the two types of tetrahedra to-
gether form a �bipartite� diamond lattice.20 The overall sym-
metry of the lattice is cubic.

As such, the pyrochlore lattice is a natural 3D analog of
the two-dimensional kagome lattice, a corner-sharing net-

work of triangles �complete graphs of order 3�. In fact the
�111	 planes of the pyrochlore lattice are alternate kagome
and triangular lattices, composed of the triangular “bases” of
tetrahedra and their “points,” respectively. Much of the un-
usual physics of the kagome lattice also extends to its higher-
dimensional cousin.

Lattices composed of complete graphs have the special
property that bilinear quantities on nearest-neighbor bonds
can be recast as a sum of squares. Thus for b=0 the Hamil-
tonian �1� can be written

H = 4 �
tetra


M −
h

8
�2

−
h2

16
+ const., �3�

where the sum runs over tetrahedra and

M =
1

4
�S1 + S2 + S3 + S4� �4�

is the magnetization �per site� of a given tetrahedron. For h
=0, a simple classical counting argument shows that two of
the eight angles needed to determine the orientation of the
four spins in any given tetrahedron remain undetermined.
Nearest-neighbor interactions do not select one unique
ground state on the pyrochlore lattice but rather the entire
manifold of states for which �M�=0 in each tetrahedron.
Thus at T=0, the system is disordered. For fields h�hsat
=8 this conclusion is unaltered by the presence of magnetic
field. In this case the manifold of ground states is determined
by the condition M=h /8 in each tetrahedron and the mag-
netization is linear in h up to the saturation field hsat=8. �We
recall that magnetic field is measured in units of J1 so that in
fact hsat=8J1.�

In order to understand how nearest-neighbor biquadratic
interactions b select among this manifold of states, it is suf-
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FIG. 3. �Color online� �a� Gound-state phase diagram of a single classical tetrahedron as a function of magnetic field h and dimensionless
coupling constant b, taken from Ref. 2. Solid �red� lines denote first and dashed �blue� lines second-order transitions. Spin configurations and
relevant irreducible representations �irreps� are shown in each case. �b� Symmetries of the A1, E, and T2 irreps of the tetrahedral group Td

used to classify different states. Solid �red� lines have negative weight and hollow �blue� lines have positive weight. Thin �black� lines have
zero weight. See also Eq. �7�.
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ficient to solve the problem of a single tetrahedron embedded
in the 3D lattice. This problem was considered in Ref. 2. For
b�0, biquadratic interactions select coplanar �and collinear�
configurations from the larger ground-state manifold of Eq.
�3�. There are four dominant phases, illustrated in Fig. 3: �i�
a 2:2 coplanar canted state for low field, �ii� a 3:1 collinear
�uuud� half-magnetization plateau state for intermediate
field, �iii� a 3:1 coplanar canted state for fields approaching
saturation, and �iv� a saturated �uuuu� state for large mag-
netic field h�hsat. An exhaustive enumeration of possible
states is given in Ref. 21.

Up to this point, we have not been specific about how the
tetrahedron was embedded in the lattice. It could, trivially,
form part of a state with Néel order, e.g., the simple four-
sublattice order favored by FM J3. However, there are infi-
nitely many other ways of joining 2:2 or 3:1 tetrahedra to-
gether at the corners and not all of them correspond to Néel
ordered states. In fact the ground-state manifold retains an
extensive Ising-like degeneracy for all h�hsat and as a result
the system remains “disordered.” The nature of this degen-
eracy, and its consequences, are explored in some detail be-
low.

B. Bond order parameters

Where Néel order is present, it can be detected in the
reduced spin-spin correlation function

D�rij� = �Si · S j� − m2. �5�

Here m2 is the expectation value of the squared magnetiza-
tion per spin

m2 =� 1

N
�
i

Si�2� , �6�

which vanishes in the absence of magnetic field. N is the
total number of spins. The simplest form of order supported
by the pyrochlore lattice is the four-sublattice Néel order
favored by FM J3, as illustrated in Fig. 2�a�.

Written in terms of the minimal four-site unit cell of the
pyrochlore lattice, four-sublattice order has momentum q
=0, and different states can easily be classified using the A1,
E, and T2 irreducible representations �irreps� of the symme-
try group Td for a single tetrahedron

�
�A1

�E,1

�E,2

�T2,1

�T2,2

�T2,3

� =�
1
�6

1
�6

1
�6

1
�6

1
�6

1
�6

1
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− 1
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− 1
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− 1
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�2
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�2

��S1 · S2

S1 · S3

S1 · S4

S2 · S3

S2 · S4

S3 · S4

� , �7�

where the spins Si belong to a single tetrahedron2,21,22—cf.
Fig. 3�b�. We can use these irreps to define bond order pa-
rameters

�	
global =

4

N
 �
tetra�

�	�2
�8�

and associated generalized susceptibilities


	
global =

N

T
����	

global�2� − ��	
global�2	 , �9�

where the sum �tetra� runs over all N /4 independent
A-sublattice tetrahedra, and �	 is the vector associated with

the 	= �E ,T2� irreps of the tetrahedral symmetry group Td,
namely, �E= ��E,1 ,�E,2� and �T2

= ��T2,1 ,�T2,2 ,�T2,3�.
These order parameters allow us to distinguish the sharp

first-order transition between orders in the T2 and E irreps,
and the transition from the A1 to T2 states at high field—cf.
Fig. 2�a�—but not the more subtle second-order transition
between the T2 symmetry uuud plateau state and the T2 sym-
metry 3:1 canted state. These are nonetheless distinct
phases—the collinear and canted T2 states are connected by
a zone-center �i.e., q=0� excitation which is gapped in the
collinear uuud state, and becomes soft at the critical field
marking the onset of the 3:1 canted state.21 The condensation
of this soft spin mode corresponds to the emergence of order
in the transverse spin components �Sx� and �Sy�—i.e., canting
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of spins away from the z axis �the direction of applied mag-
netic field�.

The bond order parameters defined in Eq. �7� couple di-
rectly to the lattice, through changes in bond length.2 They
are therefore particularly well suited to describing simple
Néel ordered states, where the magnetic ordering is driven by
the lattice effects. However the irreps on which they are
based also provide a useful measure of the correlation which
survives in the absence of long-range order, a central ques-
tion for this paper. To this end, we introduce a measure of
local correlation

�	
local =

4

N
�

tetra�

�	
2 �10�

and its associated generalized susceptibility


	
local =

N

T
����	

local�2� − ��	
local�2	 . �11�

For a single tetrahedron, �	
local and �	

global are identical. On a
lattice, �	

local lacks crossterms between different tetrahedra
present in �	

global and is therefore a measure of correlation in
the absence of long-range order. We return to these points
below.

C. Rank-two tensor order parameters

Not all of the phases supported by the Hamiltonian �1�
can be described using the bond order parameters Eq. �7�. In
Appendix A we formally classify the different types of sym-
metry breaking which can arise in this model at the level of
a single site. Here we restrict ourselves to the simplest pos-
sible generalization from Néel to multipolar order; both the
T2 and E symmetry canted states possess order of transverse
�i.e., x and y� spin components which vanishes in the collin-
ear uuud state, and which can survive even in the absence of
conventional �canted� Néel order.

To describe this, it is convenient to introduce the rank-two
tensor order parameters

Q� =
1

N
�
i=1

N

Qi
�, �12�

where the local quadrupole moments

Qi
3z2−r2

=
1
�3

�2�Si
z�2 − �Si

x�2 − �Si
y�2	 , �13�

Qi
x2−y2

= �Si
x�2 − �Si

y�2, �14�

Qi
xy = 2Si

xSi
y , �15�

Qi
xz = 2Si

xSi
z, �16�

Qi
yz = 2Si

ySi
z �17�

are summed over all lattice sites i.
Where spin rotational symmetry is not already broken by

magnetic field, i.e., for h=0, spins may select a common axis

without selecting a direction on it. This is conventional nem-
atic order, of the type exhibited by uniaxial molecules, and
can be detected using the order parameter

Q�2� = �Q3z2−r2
�2 + �Qx2−y2

�2 + �Qxy�2 + �Qxz�2 + �Qyz�2,

�18�

which is invariant under O�3� rotations. This order parameter
takes on its maximal value �Q�2��→4 /3 in a perfectly collin-
ear state, such as the 2:2 state for T→0.

In what follows we will also make use of the correlation
function measuring collinearity

P�rij� =
3

2
��Si · S j�2 −

1

3
� �19�

considered in Ref. 15. As defined, −1 /2� �P�rij���1, taking
on the value �P�rij��=0 for uncorrelated spins. In fact P�rij�
can also be expressed in terms of quadrupolar operators as

P�rij� =
3

4�
�

Qi
�Qj

� �20�

and it follows that

Q�2� =
1

N2�
ij

4

3
P�rij� . �21�

At finite h, the O�3� invariant correlation function Eq.
�19� still provides a useful measure of collinearity but does
not by itself signal a broken symmetry. In this case it is
convenient to group quadrupoles according to way in which
they transform under the remaining O�2� rotations about the
direction of magnetic field—conventionally the z axis. We
therefore consider

Q�,2 = �Qx2−y2
,Qxy� , �22�

Q�,1 = �Qxz,Qyz� , �23�

Q�,0 = Q3z2−r2
, �24�

where the magnetic field is assumed to be parallel to the z
axis. Each of the separate irreps Q�,n transforms like
�cos n
 , sin n
�—or equivalently, ein
—where 
 is the po-
lar angle in the plane perpendicular to the magnetic field.
They can therefore be used as order parameters to detect the
n-fold breaking of rotational symmetry in the xy plane. The
conventional nematic order parameter with full O�3� symme-
try, Eq. �18�, is given by the sum of squares

Q�2� = �Q�,0�2 + �Q�,1�2 + �Q�,2�2. �25�

In finite magnetic field, the one-dimensional irrep Q�,0

does not contain any information about broken symmetries
and can generally be discarded. However the two-
dimensional irreps Q�,1 and Q�,2 distinguish different or-
dered phases. In the 2:2 canted phase the mean-square value
of Q�,2 takes on a finite value
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��Q�,2�2� = ��Qx2−y2
�2 + �Qxy�2� � 0. �26�

This is another form of nematic order of the transverse spin
moments—one transforming like ei2
—and reflects the fact
that spins select a common plane in which to cant. At the
same time mean-square value of Q�,1—which transforms as
ei
, i.e., a vector in the xy plane—vanishes.

Similarly, ��Q�,2�2� takes on a finite value in the 3:1
canted phase. However in this case the 3:1 asymmetry of the
canted spin configuration defines a direction in the xy plane
and

��Q�,1�2� = ��Qxz�2 + �Qyz�2� � 0 �27�

is also finite. The 3:1 canted phase therefore possesses a
form of vector-multipole order. These facts are summarized
in Table I.

In what follows we concentrate almost exclusively on
phases which do not exhibit conventional magnetic order, as
defined by D�r� in Eq. �5�, and characterize these states us-
ing the rank-two tensor order parameters listed in Table I.
For further details of conventional Néel phases, and compari-
son with experiment, we refer the interested reader to Ref.
17. Rank-three tensors which also occur as order parameters
in the present model are discussed in Appendix B.

D. General considerations

Many frustrated systems with disordered ground states
manage none the less to order at finite temperature. This
effect is known as “order from disorder” and occurs where
there is a net entropy gain in selecting one particular state out
of the disordered manifold. Entropy is gained where a given
spin configuration �typically, collinear or coplanar� has a
higher density of low-energy excitations than its peers. How-
ever this entropy gain must be sufficient to offset the entropy
lost by choosing one state out of the manifold. Where the
ground-state manifold has an extensive degeneracy, this is a
very strong constraint. Order-from-disorder effects are
known to select one particular Néel ordered ground state in,
e.g., the frustrated square lattice23 but fail to do so in the case
of the more frustrated kagome lattice.24,25

Even where fluctuations fail to stabilize one particular
Néel ground state, they can still select a subset of states from
the ground-state manifold with a smaller—but none the less

extensive—degeneracy. This subset �submanifold� of states
will not exhibit the long range spin-spin correlations which
are the hallmark of conventional Néel-type magnetic order.
However this does not necessarily mean that the system is
truly disordered—it may well exhibit long-range order of a
more complex type.

A good example of this second type of order-from-
disorder effect is provided by the nearest-neighbor classical
XY model on the pyrochlore lattice, where thermal fluctua-
tions lead to nematic order with broken spin-rotational sym-
metry, but power-law decay of spin-spin correlations.15

In what follows we use the order parameters defined in
Sec. II C to identify phases of Eq. �1� which exhibit nematic
order in the absence of Néel order. We focus chiefly on dif-
ferent forms of unconventional order found in magnetic field.
Closely related studies in magnetic field have been made of
the classical Heisenberg model on a kagome lattice24 and
classical XY model on a checkerboard lattice.26 In both these
cases unconventional order is stabilized by thermal fluctua-
tions. Another type of unconventional order for the pyro-
chlore lattice with FM second-neighbor interactions J2�0
and h=0 was recently studied in Ref. 27. In our case the
main driving force is not fluctuations but finite biquadratic
interaction b; results for order stabilized by thermal fluctua-
tions at finite h and J3 but b
0 will be presented
elsewhere.28

III. PARTIAL LIFTING OF DEGENERACY IN FINITE
MAGNETIC FIELD

A. Collinear nematic phase for h=0

In the absence of magnetic field, the ground state of Eq.
�1� is determined by the conditions that �i� the total magne-
tization of each tetrahedron be zero, to minimize the antifer-
romagnetic exchange interaction J1 and �ii� all spins be col-
linear, to minimize the biquadratic interaction b. These
conditions select an extensive manifold of

�0 � 1.5N/2 � 1.22N �28�

states with exactly two “up” and two “down” spins �uudd� in
each tetrahedron. The degeneracy of this ground-state mani-
fold is of the same form as that encountered in Pauling’s
theory of water ice,29 and we therefore refer to it as the “ice”
manifold below. Since each spin is shared by two neighbor-
ing tetrahedra, up and down spins form unbroken loops as
shown in Fig. 4. We return to this point below.

The fact that the direction along which up and down spins
point is not determined by the Hamiltonian implies that spin
rotational symmetry must be broken spontaneously �for sim-
plicity, we none-the-less to use up and down to denote the
oppositely oriented spins�. This can be seen in the spin col-
linearity Eq. �19�, which takes on the maximal value P�r�
=1 for all states in the ice manifold, implying that the
ground-state manifold has nematic �i.e., quadrupolar� order.
�This is explicitly confirmed by MC simulations below.�
However, as already stated, the ground-state manifold does
not possess Néel order of any form.

In fact it is possible to calculate the asymptotic form of
spin-spin correlations in the ice manifold by mapping them

TABLE I. Classification of tensor order operators according to
rotational symmetry about a z axis defined by magnetic field: Each
forms an irrep transforming like ein
, where n is an integer and 
 is
the polar angle in the xy plane. Also indicated are the finite values
of the order parameters in the 2:2 and 3:1 canted states.

Order par. Tensor operators 2:2 1:3

e2i
 �Qx2−y2
,Qxy� Finite Finite

ei
 �Qxz ,Qyz� 0 Finite

�Sx ,Sy� 0 0

1 Q3z2−r2
Finite Finite

Sz Finite Finite
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onto configurations of a notional electric �or magnetic�
field.30–32 The condition that every tetrahedron has exactly
two up and exactly two down spins translates into a zero-
divergence condition for the electric �magnetic� field, and
spin-spin correlations take on a dipolar form

�Si · S j� �
1

�ri − r j�3
�29�

dictated by this effective electrodynamics. This power-law
decay of spin correlations is a signal property of the ice

manifold. However it should not be taken to imply that up
and down spins are entirely uncorrelated. Within each uudd
tetrahedron, each spin has twice as many AF-aligned neigh-
bors as FM-aligned ones, and the net correlation on nearest-
neighbor bonds is

�Si · S j�n.n. = −
1

3
. �30�

Locally, order is well formed. More formally, we can state
that these uudd tetrahedra belong to the two-dimensional E
irrep of the tetrahedral symmetry group Td, defined in Sec.
II B and that local fluctuations of order �E

local take on their
maximal value �E

local=16 /3.
This concludes our survey of symmetry breaking for T

=0 but it leaves open the question, what happens at finite
temperature? By analogy with ordered systems where order-
from-disorder is effective, thermal fluctuations might be ex-
pected to select a single configuration from the ice manifold,
and so restore Néel order. To address this question, we have
performed extensive Monte Carlo simulations using a local-
update Metropolis algorithm to sample spin configurations.
We typically perform 106 MC samplings for measurements
after 105 steps for thermalization. We have checked the con-
vergence of the results by comparing those for different ini-
tial spin configurations. In particular, to minimize the hyster-
esis associated with first-order transitions, we used mixed
initial conditions in which different parts of the system are
assigned different ordered or disordered states.33 Where the
acceptance rate in MC updates becomes extremely slow, we
used the exchange MC method,34 to avoid local spin freezing
at low temperatures. Results are divided into five bins to
estimate statistical errors by variance of average values in the
bins. The system sizes in the present work are up to L=16,
where L is the linear dimension of the system measured in
the cubic units shown in Fig. 1, i.e., the total number of spins
N is given by 16L3. We show the results for b=0.1 and b
=0.6, case by case, both of which exhibit qualitatively the
same behavior.

In the absence of applied magnetic field, the spin col-
linearity P�r� grows sharply below a transition temperature
TQ�b, as illustrated in Fig. 5. As expected, for T→0,
P�r�→1, implying that all spins have a single common axis.
The nematic order parameter Q �Eq. �18�	 is plotted in Fig.
6�a�, together with the heat capacity in Fig. 6�b� for a range
of system sizes from L=4 to L=16. Here the heat capacity is
calculated by the fluctuation of internal energy as

Cv =
�H2� − �H�2

T2N
. �31�

The sharp onset of order and jump in heat capacity imply a
first-order phase transition at TQ�0.13. Despite the absence
of long-range four-sublattice order �E

global, the local correla-
tions �E

local are well formed when this transition occurs �Fig.
6�c�	. None the less, the associated local susceptibility 
E

local

shows a sharp jump at TQ on entering the nematic state �Fig.
6�d�	.

(b)

(a)

(c) h

FIG. 4. �Color online� �a� Illustration of collinear E-symmetry
nematic state at h=0, showing looplike coordination of parallel
spins associated with the ice manifold. �b� Four-sublattice long
range order with E symmetry induced by FM J3. �c� Canted nem-
atic state with partial magnetization under applied field.
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Treating this nematic order at the level of a Ginzburg-
Landau theory, the free-energy terms allowed by lattice and
spin rotational symmetries are

F = aQ�2� + bQ�3� + cQ�4� + ¯ , �32�

where Q�2� is defined in Eq. �18�, the third-order invariant
Q�3� is given by

Q�3� = 2�Q3z2−r2
�3 + 3Q3z2−r2

��Qxz�2 + �Qyz�2	

− 6Q3z2−r2
��Qx2−y2

�2 + �Qxy�2	

+ 3�3�Qx2−y2
��Qxz�2 − �Qyz�2	 + 2QxyQxzQyz� .

�33�

In a three-dimensional uniaxial nematic state, such as that
realized here, all quadrupoles moments Q�n��Qn, where Q is
a simple scalar. The presence of a cubic term in the free
energy Eq. �32� therefore implies that the phase transition
from nematic phase to paramagnet as a function of tempera-
ture must be first order—as observed in the MC results.

In principle, thermal fluctuations might select a single
Néel state from the ice manifold, in which case TQ would
mark the onset of dipolar as well as quadrupolar order. How-
ever this is not the case. Spin-spin correlations D�r�, defined
in Eq. �5�, remain short ranged �Fig. 7�a�	. At the distances
accessible to simulation, they rapidly cross over from the
power-law decay characteristic of the ice manifold at low
temperatures �Fig. 7�b�	 to the exponential decay expected
for a paramagnet �Fig. 7�c�	.

The reason that the usual order-from-disorder mechanism
is ineffective in selecting dipolar order is the massive degen-
eracy of the ice manifold—the entropy gain of fluctuations
about the favored state �relative to the average� would have
to compensate for the loss of an extensive entropy of

ln �0/N � 0.5 ln 1.5 � 0.20

per spin. We return to this point below.

At finite temperature, the algebraic decay of spin correla-
tions D�r��1 /r3 in the Coulomb phase is expected to cross-
over to exponential decay D�r��exp�−r /�c� for r��c,
where the characteristic length scale �c diverges for T→0.
For Heisenberg spins in three dimensions, �c�1 /�T.32,35,36

This is the only length scale in the simplest Coulomb theory
and it is therefore interesting to plot the spin correlations
�D�r�� for a rescaled distance r�T. This is done in Fig. 8. At
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FIG. 5. �Color online� Spin collinearity P �Eq. �19�	 at h=0 for
b=0.1, showing the onset of nematic order at TQ�0.13. P is mea-
sured for the farthest spin pair along the �110� chains in the pyro-
chlore lattice in each system size ranging from L=4 to L=16, and
averaged over the �110� chains running in different directions.
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FIG. 6. �Color online� �a� Nematic order parameter Q=�Q�2�

�Eq. �18�	, showing the onset of nematic order at TQ�0.13; �b� heat
capacity; �c� absence of long-range four-sublattice order �E

global is
accompanied by well-formed local correlations �E

local; and �d� the
associated local susceptibility shows a sharp jump at TQ, where
spins in tetrahedra with preformed local order gain energy by se-
lecting long range collinearity. All data are for h=0, b=0.1, and for
system size ranging from L=4 to L=16.
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low temperatures T�TQ, the data appear to collapse onto a
single power-law behavior in this range while they collapse
onto an exponential behavior above TQ: there is a rapid
change between these behaviors, associated with the discon-
tinuous transition at T=TQ. The results suggest that the
Coulomb-phase theory applies to the present bilinear-
biquadratic model, and in addition, that the characteristic
length �c suddenly changes from several lattice spacings in
the nematic phase for T�TQ to one comparable to the lattice
spacing in the paramagnetic phase for T�TQ.

Once again, these results have a simple interpretation in
terms of local, preformed order. In Fig. 6�c� we plot the

expectation value of the order parameter for the simplest
kind of four-sublattice order, �E

global �Eq. �8�	. This clearly
scales to zero with system size. However there is a sharp
feature in the susceptibility associated with �E

local �Eq. �10�	
at TQ, shown in Fig. 6�d�, where tetrahedra with local E
symmetry collectively choose collinear configurations. In-
deed, as T→0, �E

local takes on its maximum allowed value of
�E

local→16 /3 �Fig. 6�c�	, as required for loops of perfectly
collinear spins.

B. Nematic phase with local-E symmetry

In applied magnetic field, the up and down spins of the
collinear nematic phase immediately “flop” into the plane
parallel to h, and transform into the 2:2 canted coplanar con-
figurations shown in Fig. 3. Such canting is entirely compat-
ible with the ice manifold, as is illustrated in Fig. 4�c�—
entire loops of spins cant simultaneously, to give a state with
smoothly evolving magnetization, but no Néel order.

The correlation function P�r� retains a finite �reduced�
value in this new canted manifold of states. However spin
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FIG. 7. �Color online� �a� Spin correlations D �Eq. �5�	 at h=0
for b=0.6, for r�L measured along �110� chains in the pyrochlore
lattice and averaged over different chain directions as in Fig. 5. r is
in units of the distance between nearest-neighbor spins. �b� Charac-
teristic 1 /r3 power-law decay of spin correlations in the low-
temperature nematic phase for T�TQ�0.5 associated with the ice
manifold of 2:2 states, plotted on a log-log scale. �c� Exponential
decay of spin correlations in the high-temperature paramagnetic
phase for T�TQ�0.5, plotted on a log-linear scale. In �b� and �c�,
gray lines are guides for the eye, �1 /r3 and �exp�−r�, respec-
tively. In all figures the data are for temperatures ranging from T
=0.30 to T=0.84 and the system size L=16.
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FIG. 8. �Color online� Spin correlations spanning the nematic
state and high-temperature paramagnet plotted as a function of the
rescaled distance r�T on �a� log-log scale and �b� log-linear scales.
The data are identical to those plotted in Figs. 7�b� and 7�c�; gray
lines are guides for the eye, showing �1 /r3 and �exp�−r�, respec-
tively. Temperatures should be compared with the nematic ordering
temperature TQ�0.5.
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rotational symmetry is now explicitly broken by the mag-
netic field so this does not of itself imply nematic order.
Nematic order is none the less present, in the selection of a
common plane within which the spins cant. This is equiva-
lent to the selection of a direction �but not an orientation� in
the xy plane and long-range order can now be observed in
the transverse moment Q�,2 defined by Eq. �22�, as dis-
cussed in Table I.

Since this director breaks the residual O�2� symmetry, the
resulting nematic state must possess a branch of gapless
�Goldstone� modes associated with rotations of the plane of
canting about the z axis. It is worth noting that a canted Néel
state with E-type symmetry would break rotational symme-
try in the same way.17 However for HLRO→0, simulations
show that spin-spin correlations retain their power-law char-
acter at low temperatures, implying the absence of long-
range Néel order.

The transition from local-E symmetry nematic state to
collinear state as h→0 is completely smooth and the finite T
properties of nematic state at finite h are qualitatively iden-
tical to those shown in Figs. 6 and 7 with the obvious caveats
that P�r��1 for T→0, and the collinear order parameter Q
must be replaced by Q�,2= �Q�,2�. Once again the onset of
nematic order at TQ is associated with a sharp peak in heat
capacity, a rise in the local fluctuations with E symmetry,
�E

local, and the absence of long-range order of the form �E
global.

A suitable free energy to describe this nematic state is

F = a2�Q�,2�2 + c22�Q�,2�4 + e222�Q�,2�6, �34�

which permits both first- and second-order phase transitions
into a paramagnetic phase as a function of temperature, de-
pending on the sign of c22. However MC simulations suggest
that the transition remains first order. Figure 9 shows the
temperature dependences of the nematic order parameter
Q�,2= �Q�,2� �Eq. �22�	 and the heat capacity �Eq. �31�	 for
h=1.2 and h=2.4. For both cases, the order parameter exhib-
its a sharp onset and the heat capacity shows a jump, indi-
cating that the E-symmetry nematic transition is of the first
order, as for h=0 in Fig. 6. As noted by comparing the re-
sults for h=1.2 and h=2.4, the discontinuity becomes clearer
as h increases.

In principle, the E-symmetry nematic state could interpo-
late to saturation, simply by canting all spins until they are
aligned with the magnetic field. However this is not energeti-
cally favorable at the level of a single tetrahedron �Fig. 3�,
and for a magnetic field h�3, the system undergoes a first-
order transition into a state with magnetization m=1 /2, seen
as the plateau in Fig. 10. This state is discussed in detail in
the section below.

C. Plateau liquid with local-T2 symmetry

The half-magnetization plateaux observed in Cr spinels
are associated with collinear states with three up and one
down spin per tetrahedron. There are in fact an extensive
number

�0 � 1.7N/4 � 1.14N �35�

of such uuud states—a manifold isomorphic to hardcore
dimer coverings of the diamond lattice formed by joining the
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FIG. 9. �Color online� �a� Nematic order parameter Q�,2

= �Q�,2� �Eq. �22�	, signaling the nematic long-range order in finite
magnetic field and �b� heat capacity �Eq. �31�	. Data are at h=1.2
and h=2.4 for b=0.1, and for system size ranging from L=4 to L
=16.
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centers of tetrahedra.37 �Dimers on bonds of the diamond
lattice correspond to the down spins in uuud states on the
pyrochlore lattice.� We therefore refer to it as the “dimer”
manifold below. Collinear uuud states with and without
simple Néel order are illustrated in Fig. 11.

It is possible to construct a field theory for the dimer
manifold at T=0 by exact analogy with the treatment of the
ice manifold above. The condition that every tetrahedron has
exactly three up and exactly one down spins translates into a
zero-divergence condition for an electric �magnetic� field,
modified to include a source term.13

Once again, thermal fluctuations are ineffective in restor-
ing long-range Néel order. Reduced spin-spin correlations
Eq. �5� at finite distance exhibit a crossover between a dipo-
lar form �cf. Eq. �29�	 for low temperatures, and exponential
decay for high temperatures—see Fig. 12. While spins are
perfectly collinear at low temperatures �Fig. 14�a�	, the z axis

h

(b)

(a)

(c)

h

h

FIG. 11. �Color online� Half-magnetization plateau states �uuud
states� on a pyrochlore lattice with exactly three up and one down
spins per tetrahedron. �a� Schematic picture of an uuud state with
no long-range order, associated with the dimer manifold; �b� uuud
state with long-range four-sublattice order with T2 symmetry in-
duced by FM J3, as considered in Refs. 2 and 17; and �c� 16-
sublattice order. See also Fig. 15.
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FIG. 12. �Color online� Absence of long-range magnetic order
in the plateau-liquid state for b=0.6, J3=0, and h=4. �a� The re-
duced spin correlation function D�r�, defined by Eq. �5�, measured
along the �110� chains, as in Fig. 7�a�. �b� Characteristic 1 /r3

power-law decay of spin correlations at low temperatures T�T�

�0.6, associated with the dimer manifold of uuud states, plotted on
a log-log scale. �c� Exponential decay of spin correlations at high
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spectively. In all figures the data are for temperatures ranging from
T=0.30 to T=0.84 and the system size L=16.
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is now singled out by magnetic field, and Q3z2−r2
contributes

to P�r�.
This means that there is no symmetry breaking associated

with the smooth rise in collinearity for T��b, which should
be regarded as a crossover rather than a phase transition.
Singular features are similarly absent from the heat capacity,
shown in Fig. 14�b�. This smooth change is also seen in the
rescaled plot of the spin correlations shown in Fig. 13. The
crossover from the low-T power-law behavior to the high-T
exponential decay is much more smooth compared to the
case for the nematic transition at h=0 in Fig. 8. This suggests
a smooth growth of the characteristic length scale �c

�1 /�T at T�T��b. We therefore conclude that the magne-
tization plateau is a true spin-liquid state, continuously con-
nected with the high-T paramagnet. We refer to this as the
plateau liquid below.

It is interesting to note that, despite the absence of any
kind of long-range order, the defining property of the plateau
liquid—its magnetization �Fig. 10�—is almost indistinguish-
able from those of the four-sublattice ordered state.17 Long-
range four-sublattice order �T2

global is explicitly absent—the

plateau liquid possesses the full A1 symmetry of the para-
magnet. None the less there is a marked rise in local-T2 order
of individual tetrahedra �T2

local at T��b accompanied by a
broad peak in its susceptibility, as shown in Figs. 14�c� and
14�d�. The global susceptibility �not shown� is vanishingly
small for large clusters and essentially structureless over the
same range of temperatures—as would be expected for a
disordered state. This curious spin-liquid clearly deserves
further study.
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FIG. 13. �Color online� Spin correlations spanning the plateau
liquid and high-temperature paramagnetic phases, plotted as a func-
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To this end, we have performed low-T expansions of the
free energy of many different ordered and disordered uuud
states. These are controlled expansions about the ground
state in powers of T for a spin of length S=1, where we write
the energy

H = E0 +
1

2�
n,m

�SnMnm�Sm + ¯ �36�

in terms of the fluctuations

�S = ��S1
x,�S2

x, . . . ,�SN
x ,�S1

y,�S2
y, . . . ,�SN

y � �37�

about a given uuud configuration. The leading fluctuation
contribution to the free energy can then be calculated in
terms of the trace over eigenvalues of the 2N�2N matrix M
in the form

F
N

=
E0

N
− T ln T +

T

2N
�ln det M��0

−
T

N
ln �0 + O�T2� ,

�38�

where E0 is the ground-state energy, �0 its degeneracy, and
� . . . ��0

the average over all degenerate ground states.
For a generic ordered phase, �0 is finite, and det M takes

on the same value for all �symmetry related� ground states.
In this case ln �0 /N→0 for N→�. However for the dimer
manifold, �0�1.14N, which means that the ground state has
a finite entropy per site

S0

N
� ln 1.14 � 0.13. �39�

In this case, different ground states are not related by simple
lattice symmetries and the fluctuation entropy per site

sf = −
ln det M

2N
�40�

takes on a range of values.
We have studied the distribution of values of sf within the

dimer manifold for a range of values of b, by numerically
calculating det M for 10 000 randomly generated uuud
states in a cluster of N=1024 sites �L=4�, using a Monte
Carlo algorithm based on loop updates of spins. We found
that the highest value of sf is achieved by an eight-fold de-
generate, 16-sublattice “R state,”13 in which the four
A-sublattice tetrahedra within the 16-site cubic unit cell of
the pyrochlore lattice take on all four possible uuud configu-
rations �Fig. 11�c�	. This state has overall cubic symmetry
and is actually observed in the plateau phase of HgCr2O4.6

The lowest value of sf is achieved by the four-sublattice or-
der shown in Fig. 11�b�. The calculated values of the maxi-
mum and minimum values sf

max and sf
min are listed in Table II

together with the mean value �sf� and the difference between
sf

max and the mean �sf�, �sf.
From these results it is immediately clear why thermal

fluctuations alone fail to select a unique ground state for any
value of b considered in this paper. The fluctuation entropy
per site gained by choosing the cubic 16-sublattice state is
miserly, for example, �sf=0.00183 for b=0.1 and �sf
=0.00051 for b=0.6. These numbers must be compared with

the extensive entropy S0 /N�0.13 of the liquid phase, all of
which is lost if the system orders. So for the values of b
considered here, thermal fluctuations cannot drive the system
to order.

However it is amusing to note that the entropy gain �sf
increases as b decreases, scaling approximately as ln b, as
shown in Table II. This raises the intriguing possibility that b
acts as a singular perturbation, and that for sufficiently small
b, fluctuations might overcome the extensive entropy S0 /N
�0.13 of the dimer manifold, driving the system order—
even though it is disordered for b=0. Such an order-from-
disorder effect would presumably favor the cubic 16-
sublattice R state, which is also believed to be selected by
quantum fluctuations at T=0.12,13,38 However in the present
model, it would occur only for vanishingly low temperatures
and would therefore be extremely difficult to access in simu-
lation. This question remains for future study.

The result above explains why the system does not order
at finite temperature but not why the fluctuation entropy fa-
vors the 16-sublattice state? We can answer this question by
looking at the distribution of the fluctuation entropies sf
within the dimer manifold of uuud states. Figure 15 shows
the distribution for b=0.6. The uuud states can be broken up
into classes of states with a different net flux of an effective
magnetic �or, equivalently, electric� field.12,13,30–32,38 This
flux is conserved by all cyclic exchanges of spins on loops of
alternating u and d spins, motivating a loop expansion of the
fluctuation contribution to the free energy.39–43 The leading
term in such an expansion counts the number Nflip of six-site
hexagonal rings in a “flippable” u-d-u-d-u-d configuration.

In Fig. 15�b� we plot the fluctuation entropy sf as a func-
tion of Nflip. The highest �lowest� values are achieved for the
16-sublattice �four-sublattice� ordered states with the most
�least� flippable hexagons. The fact that randomly generated
uuud states lie extremely close to the line connecting these
two states suggests that loops of more than six sites contrib-
ute little to the fluctuation entropy.

The remaining question is why the overall difference in
fluctuation entropy between different uuud states is so small?
We can express the fluctuation entropy in terms of the 2N
eigenvalues ��n� of M as

TABLE II. Fluctuation entropy per site calculated for randomly
generated uuud states in an N=1024 cluster. Here sf

min, sf
max, and

�sf� are the lowest, highest, and mean value of the entropy, respec-
tively, and �sf=sf

max− �sf� measures the deviation of the highest
value of entropy from the mean. Statistical errors on all numbers are
less than 10−6.

b sf
min sf

max �sf� �sf

0.05 −0.79931 −0.79608 −0.79837 0.00228

0.1 −1.63451 −1.63191 −1.63374 0.00183

0.2 −2.54944 −2.54758 −2.54888 0.00130

0.3 −3.12864 −3.12725 −3.12823 0.00098

0.4 −3.56055 −3.55948 −3.56025 0.00077

0.5 −3.90757 −3.90672 −3.90734 0.00062

0.6 −4.19874 −4.19806 −4.19857 0.00051
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sf = −
1

2N
�

n

ln �n. �41�

The eigenvalue spectrum ��n� associated with the simplest
q=0 four-sublattice uuud state can easily be calculated ana-
lytically; working with a four-site unit cell, there are four
bands, one of which is nondispersive. The associated density
of states �DOS� for b=0.6 is shown in Fig. 16�a�, where the
flat band appears as a sharp peak at �=16b+h−4. In Figs.

16�b�–16�d� we compare the integrated DOS from these four
bands with numerical results for the integrated DOS of a
1024-site cluster.

The integrated DOS, averaged within the dimer manifold
of uuud states �Fig. 16�d�	, is indistinguishable by eye from
that of the four-sublattice state �Fig. 16�b�	. The step associ-
ated with the flat band survives as a set of N /4 localized
excitations at �=16b. And, critically, the gap

� = 8b + 4 − ��8b + 4��8b + 4 − h� + h2 �42�

to the lowest lying excitation is set by a nodeless eigenvec-
tor, whose components �Si

� depend only on whether the spin
Si points up or down. All uuud states can be made formally
equivalent to four-sublattice order by renumbering the sites
in each individual tetrahedron and the energy of this nodeless
excitation is also unchanged by this renumbering of sites. It
is therefore completely insensitive to whether or not the sys-
tem is ordered. From the results it is clear why the thermo-
dynamic properties of the plateau liquid state, and, in par-
ticular, the entropy associated with fluctuations about it, are
so close to those of the ordered plateau state.

From these results, it is also possible to understand why
the numerically determined entropy gain �sf increases as b
→0 for h=4 �cf. Table II�. This singular behavior can be
traced back to a band of excitations above the spin-wave gap
��4b, with bandwidth ���b, which collapses to become a
strict set of zero modes for b→0. Since zero modes are
excluded from the sum which determines �sf, while the col-
lapsing band contributes as �ln b, b acts as a singular per-
turbation, and infinitesimal b may drive the system to order.
This is despite the fact that it is disordered for b=0 and for
the relatively large b used in our simulations.

D. Vector-multipole phase with local-T2 symmetry

At the upper critical field of the magnetization plateau, the
collinear spins of the uuud configurations cant away from the
z axis. This instability occurs at the level of a single tetrahe-
dron �Fig. 3�, where it is continuous. On a lattice, it is asso-
ciated with the closing of the gap � �Eq. �42�	 in the excita-
tion spectrum of the plateau liquid. Because of the special
structure of this excitation, discussed above, the gap closes at
the same value of hc=4+8b for all uuud states, and the tran-
sition is once again continuous—at least for T=0. However,
since the spin configurations in question are simply 3:1
canted versions of the uuud states, with local-T2 symmetry,
all of the entropic arguments presented above for the plateau
liquid still hold. Thermal fluctuations alone cannot restore
�canted� Néel order and spin-spin correlations exhibit a
power-law decay of 1 /r3 for T→0.

The resulting state does however exhibit long-range order
in both the rank-two tensor order parameters Q�,1 and Q�,2

�Eqs. �22� and �23�, and Table I	. The 3:1 canting of the uuud
spins selects a direction in the xy plane and the primary order
parameter is therefore the lower-symmetry irrep, Q�,1. The
finite value of the nematic order parameter Q�,2 reflects the
fact that this canting is coplanar. Since Q�,1 transforms like
a vector under rotations about the z axis, we classify this
state as a vector-multipole phase with local-T2 symmetry.
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FIG. 15. �Color online� �a� Probability distribution of the flip-
pable hexagons within the dimer manifold. �b� The fluctuation en-
tropy per site sf �Eq. �40�	 as a function of the number of “flippable”
hexagons. The lower bound sf=−4.19874 is set by the four-
sublattice state shown in Fig. 11�b�, which has no flippable hexa-
gons. The upper bound sf=−4.19806 is set by the 16-sublattice state
with the maximum number of flippable hexagons �see Fig. 11�c�	.
The blue dots represent a sample of 10 000 random configurations.
�c� Probability distribution of the fluctuation entropy per site sf
within the dimer manifold. All results are for a cluster of N=1024
sites with b=0.6.
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ing on �b�–�d� for comparison.
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Within the framework of a Ginzburg-Landau theory, the
contribution to the free energy from this pair of order param-
eters is

F = a1�Q�,1�2 + a2�Q�,2�2 + b12�Q1
�,2��Q1

�,1�2 − �Q2
�,1�2	

+ 2Q2
�,2Q1

�,1Q2
�,1� + c11�Q�,1�4 + 2c12�Q�,1�2�Q�,2�2

+ c22�Q�,2�4, �43�

where, following Eqs. �22� and �23�, Q1
�,2=Qx2−y2

, Q2
�,2

=Qxy, Q1
�,1=Qxz, and Q2

�,1=Qyz.
Equation �43� should be contrasted with the form of free

energy in the absence of magnetic field, Eq. �32�. The cubic
invariant Q3 survives as an interaction b12 between Q�,1 and
Q�,2, which transforms like e2i
e−i
e−i
�1 under rotations
about the z axis. This means that components of Q�,2 couple
linearly to a quadratic combination of the components of
Q�,1. Because of this, a finite value of the �lower-symmetry�
order parameter Q�,1, immediately induces a finite value of
the �higher-symmetry� order parameter Q�,2.

In principle, Eq. �43� permits both first- and second-order
phase transitions into the vector-multipole phase from disor-
dered �paramagnetic� or pure nematic phases, depending on
the sign of the coefficients c11, c12, and c22. The full solution
for Q�,1 and Q�,2 is further complicated by the fact that
these order parameters also couple to octupolar spin mo-
ments �see Appendix B for details�. However the relationship
between Q�,1 and Q�,2 is clear at the level of a single-
tetrahedron theory �cf. Ref. 2�.

Within the theory for a single, embedded tetrahedron—
which is exact for T=0—the primary order parameter Q�,1

= �Q�,1� grows as

Q�,1�h � hc� �
3

�2�3 − 2b�
�h − hc, �44�

while the secondary order parameter Q�,2= �Q�,2� grows
more slowly as

Q�,2�h � hc� �
3

2�3 − 2b�
�h − hc� . �45�

The results of this theory for the T2 vector-multipole phase
are shown by the dashed lines in Fig. 17. For the value of b
used in the present study, the zero-temperature transition
from T2 vector-multipole phase to paramagnet at high field is
strongly first order even at the level of a single-tetrahedron
theory—cf. Fig. 3—and remains so throughout.

The nature of the finite-temperature transition from the
vector-multipole phase into the paramagnet is harder to de-
termine. However, as shown in Fig. 17, it appears to be first
order for all h�h�, where �T� ,h����0.1,5.2� marks the
point at which the crossover line T� joins the boundary of the
vector-multipole phase, TV, as shown in Fig. 2�b�. On the
basis of our results, we consider that there is a tricritical
point at �T� ,h�� where the nature of the phase transition into
the T2 vector-multipole phase changes from continuous to
first order.

In Fig. 18 we present MC simulation results for the finite-
temperature transition into the vector-multipole phase for
h=6.0�h�. The primary order parameter Q�,1 becomes non-

zero with a sharp jump at a transition temperature TV
�0.042 �Fig. 18�a�	. Both heat capacity and local-T2 suscep-
tibility show a jump at the transition TV �Figs. 18�b� and
18�d�	 but no sign of long-range order in the bond-order
parameter given by Eq. �7� �Fig. 18�c�	.

The finite-temperature transition from the plateau liquid
to T2 vector-multipole phase for h�h� deserves special at-
tention since the plateau liquid exhibits algebraic decay of
correlations for intermediate distances. Monte Carlo simula-
tions suggest that the transition has a continuous character
with �approximately� mean-field exponents. We return to this
below in Sec. IV D.

E. Global structure of the h-T phase diagram

Our results for the h-T phase diagram of the antiferromag-
netic nearest-neighbor Heisenberg model with additional bi-
quadratic interactions b �Eq. �1�	 are summarized in Fig.
2�b�. There are two ordered phases, a nematic phase with
local-E symmetry and a vector-multipole phase with local-T2
symmetry, both of which break spin-rotational symmetry
about the direction of the magnetic field. These are separated
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FIG. 17. �Color online� Magnetic field dependence of �a� pri-
mary order parameter Q�,1= �Q�,1� �Eq. �23�	 and �b� secondary
order parameter Q�,2= �Q�,2� �Eq. �22�	 in the vector-multipole
phase for b=0.1. The continuous transition from the plateau-liquid
state into the vector-multipole phase at lower magnetic fields, and
the direct transition from the vector-multipole phase into the �satu-
rated� paramagnet at higher fields are clearly visible. Dashed lines
show behavior at T=0 in a single-tetrahedron theory. Points show
results of MC simulations for the system size N=8 from T=0.02 to
T=0.08.
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by a plateau-liquid state with all the symmetries of a para-
magnet in magnetic field.

This phase diagram bears a very strong resemblance to
that of the corresponding model with weak FM third-
neighbor interaction J3=−0.05, which enforces four-
sublattice order, as shown in Fig. 2�a� �cf. Ref. 17�. So far as
the topology of the phase diagram is concerned the only

change is the replacement of a line of first-order phase tran-
sitions terminating the four-sublattice plateau state �which
breaks lattice symmetries�, by a crossover in the case of the
plateau liquid �which does not�.

Throughout this paper, we have argued that preformed
local order at the level of a single tetrahedron exists in all of
these phases. Moreover, in the case of the half-magnetization
plateau, we have seen in Sec. III C that conventional mag-
netic order has very little impact on the excitation spectrum,
and therefore on the thermodynamic properties of the sys-
tem.

Viewed in this way, the correspondence between the two
h-T phase diagrams is not at all surprising—the role of sec-
ondary interactions like J3 is merely to select between an
infinite set of different ordered ground states. Precisely how
enforcement of long-range order works at finite temperature
is a complex and very interesting question, to which we pro-
vide only a partial answer below.

IV. THERMAL TRANSITIONS BETWEEN DIFFERENT
ORDERED AND DISORDERED STATES

A. General context

None of the phases described above possess conventional
magnetic order of the form �Si��0. However they all con-
tain the seeds of such order in the form of well formed local
orders �E

local and �T2

local. Long range order can easily be re-
stored by adding additional terms to the Hamiltonian �1�. The
simplest possible choice is a FM third-neighbor interaction
J3�0 in Eq. �2�, leading to four-sublattice order of the form
considered in Refs. 2 and 17. In what follows we study how
FM �J3��b precipitates an ordered uuud state from the pla-
teau liquid for h=4 and contrast this with the way in which
Néel order emerges from the nematic phase with local-E
symmetry for h=0. We also discuss the continuous transition
from plateau liquid to vector-multipole phase for h�h�, T
�T�.

We study these phase transitions as a function of tempera-
ture T which also gives us access to the high-temperature
paramagnetic phase. This is interesting because for interme-
diate distances r��c�1 /�T the nematic phases exhibit the
algebraic decay of spin correlations characteristic of a Cou-
lomb phase rather than the exponential decay of correlations
more usually associated with a paramagnet. Transitions be-
tween a disordered phase subject to an ice-rule-type con-
straint and a phase with conventional order have been dis-
cussed for a long time in the context of hydrogen-bonded
ferroelectrics.44–47 More recently such questions have arisen
again in the context of experiments of many highly frustrated
magnets48 and in the past few years there has been a theo-
retical effort to understand how order can emerge from a
Coulomb phase in classical dimer49–53 and spin models.54,55

A strong motivation for this work has been the possibility
of observing an unusual continuous phase transitions, includ-
ing transitions lying outside the Landau-Ginzburg-Wilson
paradigm.56 Indeed the �classical� dimer model on cubic lat-
tice does exhibit a continuous transition from a Coulomb
phase at high temperatures to a simple-crystalline ordered
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FIG. 18. �Color online� Temperature dependence of �a� the pri-
mary order parameter Q�,1= �Q�,1� defined by Eq. �23�, showing
the onset of the vector-multipole order at T=TV�0.042, �b� heat
capacity Eq. �31�, �c� the related measure of local correlation �T2
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defined by Eq. �10�, and the global order parameter �T2

global defined
by Eq. �8�, and �d� the associated local susceptibility Eq. �11�.
Simulations were performed for h=6, b=0.1, in clusters with L
=4 to L=16.
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phase as a function of temperature.49 This transition has un-
usual scaling properties50 and does not naively admit a
Landau-Ginzburg-Wilson description since the high-
temperature phase cannot be described using an expansion in
terms of the low-temperature order parameter. A recent very
detailed simulation study of a family of three-dimensional
dimer models with ordered ground states and high-
temperature Coulomb phases found a rich variety of continu-
ous and discontinuous phase transitions, including double
phase transitions where monopole excitations condense out
of the Coulomb phase to give a conventional paramagnet at
intermediate temperatures.53

The present understanding of these phenomena is that the
gauge field associated with Coulomb phase is minimally
coupled to a matter field which condenses in the ordered
phase, following an Anderson-Higgs mechanism.51–53 In fact
it is also possible to study zero-temperature �quantum� phase
transitions from Coulomb to ordered phases in three-
dimensional quantum dimer models.57 These can, in prin-
ciple, be continuous, occurring through the condensation of
monopole excitations in the Coulomb phase13 but numerical
simulations suggest that the transition is first order.38

Less is known about transitions in spin models but one
interesting scenario exists for a continuous transition in an
extended Heisenberg model on a pyrochlore lattice from a
Coulomb phase to a four-sublattice ordered state.54 This tran-
sition is found to be in the same universality class as a
uniaxial ferroelectric with dipolar interactions, for which the
upper critical dimension is three.58 This makes possible con-
tinuous transitions with mean-field exponents �up to log
corrections�—a scenario which closely resembles the transi-
tion from plateau-liquid into vector-quadrupole phase dis-
cussed below. Generically, however, transitions from Cou-
lomb liquids into ordered states seem to be first order,54 a
fact which may be explained by interactions between fluc-
tuations of associated gauge field.55

We conclude by noting that the complex forms of order
which can occur in Heisenberg models on the pyrochlore
lattice as a result of the interplay between farther-neighbor
interactions and thermal fluctuations are also a topic of cur-
rent interest.27 In finite magnetic field, these lead to a half-
magnetization plateau which can be tuned at will between
different forms of order.28 A similar fluctuation driven pla-
teau, but with a uniquely defined form of order, is also ex-
pected to occur for the edge-sharing tetrahedra of the fcc
lattice.59 We now return to the model in question.

B. Transition from plateau liquid to ordered uuud state

For h�4, T�b, Eq. �1� exhibits the plateau-liquid state
described in Sec. III C �cf. Fig. 2�b�	. Inclusion of a FM
third-neighbor interaction J3 �Eq. �2�	 causes it to order at
low temperatures. We consider first the conventional limit
where both �J3� and b are “large,” choosing parameters J3
=−0.06 and b=0.6. In this case there is strongly first-order
transition from paramagnet to four-sublattice plateau state
for TN�0.70. This can be seen very clearly in simulation
results for the heat capacity and the order parameter �T2

global,
and its susceptibility 
T2

global, presented in Fig. 19. If we now

decrease �J3�, the transition temperature TN must also de-
crease, and for sufficiently small �J3� it will become smaller
than the crossover temperature T��b associated with the
plateau liquid.

In this case, there are anomalies in thermodynamic quan-
tities at two distinct temperatures as demonstrated in Fig. 20.
There is a broad maximum in 
T2

local at T��0.6 �Fig. 20�c�	,
signaling the onset of the plateau-liquid state, accompanied
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FIG. 19. �Color online� Temperature dependence of �a� heat
capacity defined by Eq. �31�, �b� and �c� the related measure of local
correlation �T2

local and its susceptibility defined by Eqs. �10� and �11�,
and �d� and �e� the global order parameter �T2

global and its suscepti-
bility defined by Eqs. �8� and �9� for b=0.6, h=4, and a range of
values of system size. The results are for J3=−0.06, showing a
single first-order transition into the ordered phase at TN=0.70�1�
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by a broad peak in the heat capacity Cv at a slightly lower
temperature �Fig. 20�a�	. And, at T=TN�0.46�T�, there is a
small jump in Cv, accompanied by a clear singularity in glo-
bal order parameter susceptibility 
T2

global �Fig. 20�e�	. While
there is no true phase transition at T�, it is clear that the bulk
of the entropy of the paramagnet is lost in the smooth cross-
over into the plateau liquid, and not in the first order transi-
tion into the ordered phase.

So what happens for J3→0? Unfortunately this question
is hard to answer by Monte Carlo simulation, as the massive
degeneracy of the uuud states translates into many compet-
ing local minima in the free energy. However TN is strictly

zero for J3=0 and there are two obvious scenarios for how
this can be achieved.

The first is that the first-order transition into the ordered
phase becomes weaker as TN→0, terminating in a critical
end point for J3=0 and TN=0. This end point would in fact
be multicritical since many different ordered uuud states can
be formed out of the dimer manifold for different choice of
long-range interactions. Within this scenario, the power-law
correlations between spins in the plateau liquid for T→0
could be viewed as evidence of critical fluctuations. The sec-
ond scenario is that the first-order transition into the ordered
phase persists down to TN=0. Since an infinite number of
different ordered phases branch out from the point J3=0 and
TN=0, it can probably best be termed “multifurcative.”

First-order phase transitions between different ordered
phases with an infinite degeneracy at the transition occur in a
number of models. Such phase transitions are first order, in
the sense that neither ordered parameter collapses approach-
ing the critical point. However they also exhibit one of the
characteristic features of a second-order transition, namely, a
soft excitation or set of soft excitations connecting the dif-
ferent ordered ground states.

As far as we can tell from our present results, it seems
most likely that the classical pyrochlore AF with biquadratic
interactions exists at a multifurcative point in parameter
space, with an infinite ground-state degeneracy, not at a criti-
cal end point. As shown in Fig. 21, the low-temperature
value of the order parameter is broadly independent of TN.
This implies that the phase transition in fact becomes more
strongly first order at TN→0 and appears to rule out a
�multi-�critical end point. Our collected simulation results for
J3→0 are summarized in the form of the phase diagram in
Fig. 22.

It is amusing to note that this phase diagram bears a su-
perficial resemblance to the phenomenology of a second-
order �quantum� critical point—a transition temperature
which collapses to a special point with algebraic decay of
correlation functions, which in turn controls a broad region
of the phase diagram up to a characteristic crossover tem-
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perature T�. All of this despite the fact that the only phase
transition present is first order, which means that the length
scale associated with fluctuations remains finite. Some of the
generic features seen in our model—power-law decay of cor-
relations over a large, but finite, length scale—have been
previously discussed in the context of other models with
strong local constraints, where they were dubbed “high-
temperature criticality.”60

The transition from a critical “Coulombic” phase de-
scribed by a U�1� gauge theory into a simple ordered state as
a function of temperature can be studied much more cleanly
in the �classical� dimer model on cubic lattice, where the
constraint enforcing the dimer manifold is infinite. In this
case, the phase transition is continuous, and exhibits interest-
ing and unusual scaling properties.49,50 We have made a pre-
liminary study of the “stiffness” K associated with fluctua-
tions in a U�1� gauge theory for temperatures spanning the
paramagnet and plateau liquid phases in our model �see Fig.
22� but find no clear evidence of a phase transition. However
the way in which the dimer and loop manifolds break down
at finite temperature in a model with a finite constraint is an
interesting problem, and one which deserves further study.
We note in passing that interesting, related, problems arising
the context of quantum loop models.61

C. Transitions from paramagnet to E-symmetry nematic phase
and Néel ordered state

It is interesting to contrast the finite-temperature phase
transitions associated with the plateau states for h�4 with
the transitions into E-symmetry Néel and nematic ordered
states for h=0. Once again, for large �J3� there is a strongly
first-order transition from the paramagnet into the Néel phase

at a unique temperature TN. Meanwhile, for “small” �J3��b,
there is double transition, first from paramagnet to
E-symmetry nematic phase at TQ�b, and then into the four-
sublattice Néel order at a much lower temperature TN, as
demonstrated in Fig. 23. Within the limits of our simulation,
both of these transitions appear to be first order in
character.62 The results for varying J3 are summarized in the
phase diagram in Fig. 24. The first-order transition from
paramagnet to nematic phase at TQ at h=0 should be com-
pared with the crossover from paramagnet to plateau liquid
T��b observed for h=4 in Fig. 22.

D. Transition from plateau-liquid to vector-multipole phase

Perhaps the most interesting of the finite-temperature
transitions observed in our model is the one from plateau-
liquid to vector-multipole phase, already described in Sec.
III D. At one level this is the most exotic phase transition we
study—a continuous phase transition from a Coulombic state
with algebraic decay of correlation functions �the plateau liq-
uid� to a phase with long-range multipolar order �the vector-
multipole state�. But at the same time it has the simplest
phenomenology of any of the phase transitions in this paper
with the order parameter exhibiting a simple mean-fieldlike
behavior Q�,1�T���TV−T with TV�0.09, as shown in Fig.
25�a�. The secondary order parameter Q�,2 grows more
slowly as expected �Fig. 25�b�	. The heat capacity does not
show a noticeable singularity at T=TV in Fig. 25�c�, which is
also consistent with the mean-field behavior Cv��T−TV��

with �=0. �The broad peak at T�0.112 again corresponds to
the crossover temperature T� for the plateau-liquid state.�

At a qualitative level, and in the spirit of this paper, it is
easy to see how a continuous transition can arise between
these two states. Both are built of tetrahedra with a local-T2
character, with three up and one down spin, joined at the
corners. Both states will exhibit algebraic decay spin corre-
lations at low temperatures, as a result of the infinite number
of ways that these tetrahedra can be assembled to form a
pyrochlore lattice. The only difference is that three up and
one down spins are canted in the vector-multipole phase,
giving a finite value of Q�,1 and Q�,2 �Figs. 25�a� and
25�b�	. As long as this canting can interpolate smoothly to
zero in the collinear uuud state, the transition will be con-
tinuous. And at the level of a Ginzburg-Landau theory, noth-
ing prevents this from happening—cf. Eq. �43�.

However, in principle, it should also be possible to tran-
scribe each of these phases in terms of the more sophisticated
“solenoidal field” theory used to describe Néel order in a
spin model with a high-temperature Coulomb phase �cf. Ref.
54�. To the best of our knowledge, nobody has yet attempted
to extend the gauge-field description of a Heisenberg-type
spin model to treat multipolar order. But it is interesting to
note that the transition from Coulombic phase to simple Néel
order was found to be continuous, and in a universality class
with upper critical dimension three, i.e., one where the criti-
cal behavior is mean-fieldlike, up to log corrections.54,58

V. SUMMARY AND CONCLUSIONS

We have studied the ordered and disordered phases of the
classical, bilinear-biquadratic Heisenberg model on the pyro-
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FIG. 22. �Color online� Phase diagram for the classical Heisen-
berg antiferromagnet on a pyrochlore lattice in applied magnetic
field h=4 with additional biquadratic interactions b=0.6 �Eq. �1�	.
The transition temperature TN associated with the gapped, ordered,
half-magnetization plateau state vanishes as the strength of ferro-
magnetic third-neighbor interactions J3→0, as determined by
Monte Carlo simulation. A state exhibiting a half-magnetization
plateau but no long-range magnetic order exists above TN up to a
crossover temperature T�. Estimates of the crossover temperature
are taken from peaks in the local susceptibility and heat capacity.
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chlore lattice at finite temperature and in applied magnetic
field. We find a rich collection of unconventional states—
nematic and vector-multipole phases with distinct and differ-
ent local symmetries, separated by a half-magnetization pla-

teau with spin-liquid character. All of these phases show an
underlying Coulombic character with algebraic decay of
spin-correlation functions over distances r��c�1 /�T. Inter-
estingly, the transition from plateau-liquid to vector-
multipole phase is continuous and appears to be well-
described by mean-field theory.

While this behavior is undeniably exotic, all of these
states can be understood—and even anticipated—from a
proper understanding of the geometry of the pyrochlore lat-
tice and the properties of a single tetrahedron. Strong local
fluctuations of Néel order are present in all of these phases
and the zero-temperature phase diagram can be understood
simply from the “self-assembly” of these ordered tetrahedra
into complex states with higher symmetry.

It is therefore unsurprising that conventional Néel order
�with four-sublattice structure� is immediately restored by
the introduction of a ferromagnetic third-neighbor coupling
J3. However for small �J3�, the unconventional states survive
above the Néel transition temperature TN. In particular, the
spin-liquid plateau survives above TN, up to a crossover tem-
perature T��b. The transition between liquid and ordered
plateaux is first order in nature, and remains so for TN→0.
For small �J3�, the system also exhibits a first-order transition
between the Néel and nematic phases, in addition to the first-
order transition from the nematic phase into high-
temperature paramagnet.

So far as experiment is concerned, our main finding is that
the physics of a pyrochlore antiferromagnet in magnetic field
can be largely determined by the properties of a single tetra-
hedron. In the simple models which we have considered it is
possible to tune between states with entirely different point-
group symmetries at will, simply by changing the form of
�weak� long-range interactions present. This is an oversim-
plification, in the sense that magnetostriction in real systems
is likely single out a particular phonon �or family of
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phonons� with definite symmetry, which will then drive the
system toward collinearity �b, in our model� and select the
low-temperature ordering pattern �long-range interactions,
e.g., J3, in our model�. However, as long as there is a strong
coupling to phonons within individual tetrahedra, the form of
the magnetization plateau and associated phases may be
largely independent of these �system dependent� details.

ACKNOWLEDGMENTS

We are pleased to acknowledge stimulating discussions
with F. Alet, J. Chalker, G. Kriza, G. Misguich, T. Momoi, H.
Shiba, H. Takagi, O. Tchernyshyov, S. Trebst, H. Tsunetsugu,
and H. Ueda. We are particularly indebted to R. Moessner
and M. E. Zhitomirsky for valuable comments about multi-
critical points and the classification of multipolar order.
This work was supported under EPSRC Grants No. EP/
C539974/1 and No. EP/G031460/1, and SFB 463 of the DFG
�N.S.�; Hungarian OTKA under Grants No. T049607 and
No. K62280 �K.P.�; Grant-in-Aid for Scientific Research No.
16GS50219, No. 17740244, and No. 19052008 from MEXT,
Japan; Global COE Program “the Physical Sciences Fron-
tier,” MEXT, Japan, and Next Generation Super Computing
Project, Nanoscience Program �Y.M.�. Part of this work was
done while K.P. and Y.M. were visitors at KITP Santa Bar-
bara. K.P. and N.S. also acknowledge the hospitality of MPI-
PKS Dresden, where a part of this work was completed.

APPENDIX A: CLASSIFICATION OF SYMMETRY
BREAKING AT THE LEVEL OF A SINGLE SITE

In order to identify the different possible forms of mag-
netic order which can survive where conventional Néel order
breaks down, it is helpful to classify the different forms of
symmetry breaking which exist at the level of a single site.
This analysis is in the spirit of the detailed classification for
the nematics in liquid crystals undertaken in Ref. 63 and
motivates the rank-two and rank-three tensor order param-
eters introduced in Sec. II C and Appendix B. In order to
keep contact with quantum spins, which are axial rather than
polar vectors, we must keep track of time-reversal symmetry.

In Table III we show the transformation rules for the spins
under selected symmetry operations, including time reversal
�S=−S. In contrast to the usual polar vectors, inversion
leaves the axial vectors invariant—as a consequence, all the
usual �reflection, rotation, and inversion� symmetry opera-
tion can be represented by an orthogonal matrix belonging to
SO�3�, with determinant equal to +1. The role of inversion in
the case of polar vectors is taken over by the time reversal
operator �.

All of the symmetry operations, extended with the time
reversal, can be represented by orthogonal matrices with de-
terminant −1. In the Table III we also check if the collinear
and coplanar states are invariant under those symmetry op-
erations. Since we are interested in the symmetry breaking
which can occur in the absence of broken translational sym-
metry, we do not apply the symmetry elements to the lattice
points �i.e., we treat all the spins as they were at the origin�.
We find that the invariant operations of the 2:2 state include
a C2�z� rotation in addition to the symmetry operations of the
3:1 state.

In Table IV we show the symmetry group of each of the
spin states. In order to facilitate comparison with Ref. 63, we
also show the symmetry group of the states if the spins were
polar vectors. We can see that as the time reversal does not
play a role for the 2:2 collinear state, its symmetry group
being the gray-group D�h+�D�h. The magnetic �the 3:1 col-
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Q�,1��TV−T with TV�0.091 �solid black points and gray line�.
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ity, showing no measurable singularity at T=TV. All data are for
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linear and both canted states� states have a magnetic point
group as a symmetry group.

When studying which symmetry group is broken for the
magnetic states, we need to note that the external magnetic
fields lowers the O�3� symmetry of the space to C�� �E , I�
+��vC�� �E , I�, where the axis of the C� is parallel to the
magnetic field, and �v is a reflection to a plane that includes
the axis of the magnetic field. The symmetry of the space
with magnetic field is actually identical to the symmetry of
the 3:1 collinear state. Thus, within a Ginzburg-Landau
framework we do not expect a continuous �second-order�
phase transition between the T=0 liquid plateau and the
high-temperature disordered phase. The Z2 lowered symme-
try of the 3:1 state with respect to 2:2 canted state is mani-
fested in the Z2 symmetry lowering of the vector to the nem-
atic phase.

APPENDIX B: HIGHER-ORDER MULTIPOLES

In this paper, we have classified states according to the
lowest moment of spins which breaks spin-rotational symme-
try. According to this conventional, “common-sense” pre-
scription, a state which lacks conventional dipolar �e.g.,
Néel� order, but exhibits a common plane for the canting of
spins, is automatically classified as a nematic or vector-
multipole phase. While this classification scheme is unam-
biguous, it is not complete, and in some cases may give the

wrong answer, so far as the primary order parameter is con-
cerned.

This point was recently discussed at length for the copla-
nar ground-state manifold of the classical Heisenberg model
on a kagome lattice, where the primary order parameter was
convincingly argued to be octupolar, and not quadrupolar, in
nature.25 Incorrect assignment of the primary order param-
eter does not affect our ability to detect a bulk ordered phase
but can lead to false conclusions about phase transitions.
This is particularly true of two-dimensional systems at finite
temperature, where the homotopy group associated with the
order parameter determines the form of topological defect
entering into Berezinsky-Kosterlitz-Thouless-type phase
transitions.

In fact the states which we classify as “nematic” or “vec-
tor multipole” in Sec. III also posses higher-order multipole
moments which, under some circumstances, couple to the
rank-two tensor order parameters used in this paper. We il-
lustrate this below for the specific case of the rank-three
tensor associated with octupolar order.

This is odd under time reversal and has seven components

T� =
1

N
�

i

Ti
� �B1�

given by

TABLE III. The transformation of spins under different symmetry operations. E is the identity element, I
is the inversion, � is the time reversal operation, ��� is a reflection with a mirror plane ��, and C2��� is a
two-fold rotation around the � axis. In the last two columns we indicate if the 2:2 and 3:1 canted states �with
magnetic moment along the z axis and spins are in the xz plane� are invariant with respect to the particular
operation.

Symmetry elements Sx Sy Sz 2:2 3:1

E , I Sx Sy Sz Yes Yes

�yz ,C2�x� Sx −Sy −Sz No No

�xz ,C2�y� −Sx Sy −Sz No No

�xy ,C2�z� −Sx −Sy Sz Yes No

��yz ,�C2�x� −Sx Sy Sz Yes No

��xz ,�C2�y� Sx −Sy Sz Yes Yes

��xy ,�C2�z� Sx Sy −Sz No No

� ,�I −Sx −Sy −Sz No No

TABLE IV. The symmetry of the different configurations, treating the arrows as polar vectors, or as axial vectors with and without
inclusion of the time-reversal symmetry. In the last column we show the broken symmetry �we assume no magnetic field in the case of the
2:2 collinear state and magnetic field along the z direction for 3:1 collinear and for the two canted states�. The notation is the same as in the
Table III with the addition of two elements: �v is a reflection to a plane perpendicular to the C� axis ��xz is also a �v� while C2� is a two-fold
rotation with axis perpendicular to the C� axis.

State Polar vectors Axial vectors Spins �axial vectors+time reversal� Symmetry broken

2:2 collinear D�h=C� � �1,C2� ,�v , I� D�h D�h+�D�h O�3� / �O�2��O�1��=RP2

3:1 collinear C�v=C�� �E ,�v� C�� �E , I� C�� �E , I�+��vC�� �E , I� 1

2:2 canted C2v= �E ,C2�z� ,�xz ,�yz� C2h= �E , I ,C2�z� ,�xy� C2h+��xzC2h C� /C2

3:1 canted C1h= �E ,�xz� S2= �E , I� S2+��xzS2 C�
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Ti
x3−3xy2

= �Si
x�3 − 3Si

x�Si
y�2, �B2�

Ti
y3−3yx2

= �Si
y�3 − 3Si

y�Si
x�2, �B3�

Ti
z�x2−y2� = �6��Si

x�2 − �Si
y�2	Si

z, �B4�

Ti
xyz = 2�6Si

xSi
ySi

z, �B5�

Ti
x�r2−5z2� =�3

5
Si

x��Si
x�2 + �Si

y�2 − 4�Si
z�2	 , �B6�

Ti
y�r2−5z2� =�3

5
Si

y��Si
x�2 + �Si

y�2 − 4�Si
z�2	 , �B7�

Ti
z�3r2−5z2� =�2

5
Si

z�3�Si
x�2 + 3�Si

y�2 − 2�Si
z�2	 . �B8�

In the absence of magnetic field, quadrupolar order can
couple to �fluctuations of� octupolar order through terms of
the form

�F � �
����

Q��T���T��� �B9�

in the free energy, which respect the full O�3� symmetry of
the Hamiltonian, and time reversal invariance.63 Therefore, a
finite octupolar order parameter usually induces a quadrupo-
lar one while the opposite is not always true. When they
occur together, some care must then be taken to assign the
correct primary order parameter.

In finite magnetic field we again classify these octupoles
according to the way in which they transform under rotations
about direction of magnetic field �the z axis�. We obtain a
single one-dimensional irrep and three two-dimensional ir-
reps

T�,3 = �Tx3−3xy2
,Ty3−3yx2

� , �B10�

T�,2 = �Tz�x2−y2�,Txyz� , �B11�

T�,1 = �Tx�r2−5z2�,Ty�r2−5z2�� , �B12�

T�,0 = Tz�r2−5z2�, �B13�

which take on finite values in the different ordered states.
These results are summarized in Table V. As the magnetic
field breaks time-reversal invariance, the quadrupolar and oc-
tupolar order parameters may mix linearly in the free energy.
For example, where Sz is singled out by magnetic field, the
new terms that enter the free energy are of the form

�F � Sz�Qx2−y2
Tz�x2−y2� + QxyTxyz	 �B14�

and

�F � Sz�QxzTx�r2−5z2� + QyzTy�r2−5z2�	 , �B15�

which respect the remaining O�2� rotational symmetry �more
precisely, they can mix if the Sz order parameter is finite,
irrespectively of the presence of external magnetic field�.
Magnetic field can therefore strongly modify the symmetry
of a �primary� multipolar order parameter. For a related dis-
cussion, see Ref. 26.

It is not our intention to give a definitive treatment of this
complex set of coupled order parameters in this paper. How-
ever we have made a preliminary study of the behavior of the
rank-three and rank-four tensor order parameters in the
present model, using the T=0 theory for a single tetrahedron
embedded in the lattice, and classical Monte Carlo simula-
tion. We have been unable to identify any higher-order mul-
tipole which grows faster at a continuous transition than the
rank-two tensor order parameters given in Sec. II C and so
these retain their tentative assignment as primary order pa-
rameters.
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1 Tz�3r2−5z2� Finite Finite
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